首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   487篇
  免费   33篇
  国内免费   2篇
化学   363篇
晶体学   5篇
力学   11篇
数学   39篇
物理学   104篇
  2024年   1篇
  2023年   16篇
  2022年   11篇
  2021年   21篇
  2020年   21篇
  2019年   31篇
  2018年   17篇
  2017年   13篇
  2016年   28篇
  2015年   23篇
  2014年   28篇
  2013年   31篇
  2012年   42篇
  2011年   35篇
  2010年   24篇
  2009年   16篇
  2008年   23篇
  2007年   32篇
  2006年   14篇
  2005年   17篇
  2004年   7篇
  2003年   6篇
  2002年   7篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有522条查询结果,搜索用时 15 毫秒
51.
52.
A number of clinically significant penem β-lactams, both free acids and sodium salts, were investigated by mass-analyzed ion kinetic energy spectrometry (MIKES) following fast atom bombardment (FAB) ionization. The collisionally activated dissociation (CAD) products of [M + H] + and [M + Na]+ ions are described. Carbon dioxide loss was observed for some of the free acids, whereas a daughter ion generated by β-lactam ring cleavage was characteristic of the sodiated species. Other fragments included successive cleavages and rearrangements of the substituent side-chain, permitting complete characterization of these chains. The fragmentation pattern for both protonated and sodiated species were more clearly established by CAD MIKES than by normal FAB mass spectral analyses. A notable feature of this technique was its ability to differentiate between pairs of regioisomeric penems on the basis of their fragmentation patterns. These compounds could not be differentiated in the usual mass spectra.  相似文献   
53.
54.
Distributed point source method (DPSM) is gradually gaining popularity in the field of non-destructive evaluation (NDE). DPSM is a semi-analytical technique that can be used to calculate the ultrasonic fields produced by transducers of finite dimension placed in homogeneous or non-homogeneous media. This technique has been already used to model ultrasonic fields in homogeneous and multi-layered fluid structures. In this paper the method is extended to model the ultrasonic fields generated in both fluid and solid media near a fluid-solid interface when the transducer is placed in the fluid half-space near the interface. Most results in this paper are generated by the newly developed DPSM technique that requires matrix inversion. This technique is identified as the matrix inversion based DPSM technique. Some of these results are compared with the results produced by the Rayleigh-Sommerfield integral based DPSM technique. Theory behind both matrix inversion based and Rayleigh-Sommerfield integral based DPSM techniques is presented in this paper. The matrix inversion based DPSM technique is found to be very efficient for computing the ultrasonic field in non-homogeneous materials. One objective of this study is to model ultrasonic fields in both solids and fluids generated by the leaky Rayleigh wave when finite size transducers are inclined at Rayleigh critical angles. This phenomenon has been correctly modelled by the technique. It should be mentioned here that techniques based on paraxial assumptions fail to model the critical reflection phenomenon. Other advantages of the DPSM technique compared to the currently available techniques for transducer radiation modelling are discussed in the paper under Introduction.  相似文献   
55.
Nitrogen doped multilayered graphene (NDMLG) is synthesized by annealing the black fluffy mass obtained by decomposing the complex prepared from Zn(OAc)2, diethanolamine and triethanolamine. The NDMLG has been characterized by HRTEM, FESEM, XRD, XPS, Raman spectroscopy, BET which indicate formation of nitrogen doped multilayer graphene flakes with high surface area. NDMLG shows better electrochemical oxidation property towards Dopamine, Uric acid and Ascorbic acid. The linear response ranges for determination of DA, UA and AA are 0.5–150 µM, 3–60 µM and 80–2000 µM respectively and the detection limits (S/N=3) are 15 nM, 15 nM, 580 nM, respectively in the mixture.  相似文献   
56.
A straightforward strategy to prepare nanoporous metal oxides with well‐defined shapes is highly desirable. Through thermal treatment and a proper selection of metal‐cyanide coordination polymers, nanoporous nickel‐cobalt mixed oxides with different shapes (i.e., flakes and cubes) can be easily prepared. Our nanoporous materials demonstrate high electrocatalytic activity for oxygen evolution reaction.  相似文献   
57.
The controlled assembly of gold nanoparticles (AuNPs) with the size of quantum dots into predictable structures is extremely challenging as it requires the quantitatively and topologically precise placement of anisotropic domains on their small, approximately spherical surfaces. We herein address this problem by using polyoxometalate leaving groups to transform 2 nm diameter gold cores into reactive building blocks with hydrophilic and hydrophobic surface domains whose relative sizes can be precisely tuned to give dimers, clusters, and larger micelle-like organizations. Using cryo-TEM imaging and 1H DOSY NMR spectroscopy, we then provide an unprecedented “solution-state” picture of how the micelle-like structures respond to hydrophobic guests by encapsulating them within 250 nm diameter vesicles whose walls are comprised of amphiphilic AuNP membranes. These findings provide a versatile new option for transforming very small AuNPs into precisely tailored building blocks for the rational design of functional water-soluble assemblies.  相似文献   
58.
We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions MII3[(M′)III(CN)6]2·nH2O and MII2[FeII(CN)6nH2O, where MII=Mn, Fe, Co, Ni, Cu and Zn, (M′)III=Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between −150 °C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm3?m, F4?3m and Pm3?m. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7×10−6 K−1 for Co3[Co(CN)6]2·12H2O. All of the MII3[CoIII(CN)6]2·nH2O compounds show negative thermal expansion behavior, which correlates with the Irving–Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the MII3[FeIII(CN)6]2·nH2O family are found to switch between positive (for M=Mn, Co, Ni) and negative (M=Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the MII2[FeII(CN)6nH2O compounds show positive thermal expansion behavior.  相似文献   
59.
A highly luminescent three-dimensional microporous metal-organic framework, [Zn(2)(oba)(2)(bpy)]·DMA, demonstrates unique selectivity for the detection of high explosives and other aromatics via a fluorescence quenching and enhancement mechanism.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号